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SUMMARY 196 LY

An experimental investigation is carried out to determine the
effect of an axially symmetric initial imperfection on the buckling
load of a circular cylindrical shell under axial compression loading.
The imperfection studied has the form of a half sine wave in the length
direction, The shells are formed by a copper electroforming process.
The theoretical buckling loads are also computed for the imperfect
shells, and show the same trend as the experimental study.

INTRODUCTION

The large discrepancy between the classical buckling load of a
circular cylindrical shell under axial compression and the experimental
values of the buckling load is a well known but little under stood phenom-
enon (Ref. 1). Several reasons for this discrepancy have been proposed
but have yet to be substantiated by adequate experimental investigations.
Donnell and Wan (Refs. 2 and 3) have shown that imperfections in
geometrical shape have an important effect but the exact degree of this
effect for various types of imperfections is still to be determined. The
idea of a jump of the shell from the prebuckled state at a load lower than
the classical load has been proposed by von Karméan and Tsien (Refs. 4
and 5) but the exact mechanism of the jump and conditions under which it
is possible are as yet unexplored.

The purpose of this investigation was to study the effect of a
specific type of initial imperfection under very carefully controlled
conditions. In order to accomplish this the following steps have been
carried out:

1. development of a method of making cylindrical shells
which were as nearly perfect as possible:



4.

establishment of testing techniques in which the stress
distribution was controllable and measurable:

determination of the buckling stress of these nearly
perfect shells:

addition of the initial imperfections to be studied and
the determination of the buckling stress.

The investigation was conducted at the Graduate Aeronautical
Laboratories of the California Institute of Technology under the
sponsorship and financial assistance of the National Aeronautics and
Space Administration, Research Grant NsG-18-59,
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EXPERIMENTAL INVESTIGATION

Fabrication of the Test Specimens

The method of manufacturing of the cylindrical shells is not new
with GALCIT (see reference 6) but a number of refinements were
required in order to obtain the uniformity and accuracy desired. Basi-
cally it consisted of plating a copper shell on an accurately machined
wax mandrel and then melting the mandrel out of the shell. For a shell
8 inches in diameter and 10 inches long, a steel cylinder 7 inches in
diameter and 13 inches long was used as a core (this provided a means
of water cooling the wax to harden it). On this core was cast a layer of
wax consisting of a two to one mixture of refined paraffin and Mobile
Cerese Wax 2305, This was cooled, machined to the proper shape, and
sprayed with silver paint thinned with toluene. Figure 1 shows a mandrel
and finished wax form. The plating was done in a Cupric Fluoborate,
Cu(BF4),, bath with a 15 inch diameter copper anode which was bagged
in fine mesh Dynel fabric. During plating the mandrel was rotated and
the bath was given additional agitation by forcing air through it. Using
voltages less than 10 volts and current densities up to 55 amperes per
square foot, the plating time was approximately 20 minutes per 0. 001
inches of plate.

After plating, the ends of the cylinder were removed (some
thickness increase occurred just at the ends), the wax was carefully
melted out, and the residual wax and silver paint was removed with
benzene. The shell thickness used in this series of tests was approxi~
mately 0. 0045 inches. The thickness variation in any shell could be
held to less than 3 per cent. In the radial direction, the desired radius
could be held to + t/2 or approximately + 0. 0025 inches.



Tests to determine the characteristics of the plated copper were

carried out in uniaxial tension., This was done by utilizing long strips

of the copper that were soldered into one-eighth inch thick plates that
were in turn clamped into the jaws of an Instron testing machine. The
strips had length to width ratios greater than 15, The head displacement
of the testing machine was used as the measure of strain and the load
was read from the Instron load cell. A typical stress-strain curve is
shown in Figure 2. The value of Young's modulus used in this work was

13.0 x 106 lb/inz.

A determination of Poisson's ratio was not attempted since its
influence in the reduction of the buckling data is of secondary importance.
A value of 0. 30 was used for this purpose,

Test Procedure

The buckling tests were carried out in the controlled displacement
testing machine shown in Figure 3. This machine was designed to be
rigid in comparison with the test specimen and capable of subjecting the
test cylinder to very small increments of end displacement. The relative
displacement of the two end plates of the testing machine was controlled
by three screws. One complete turn of the screws gave a displacement
of 0.025 inches, The screws could be operated independently to give the
proper load distribution on the shell and then simultaneously to increase
the load to the buckling point, The springs shown in the figure were used
to preload the testing machine when mounting the test specimen in the
machine and securing it to the end plate of the testing machine, The
testing was carried out when the machine was in the position shown in
Figure 3. The end plate with the gear drive rested on pins and the
opposite end rested on a set of rollers.

The load distribution was monitored and total load was obtained
on the load measuring cylinder shown in Figures 4 and 5. This consisted
of a seamless brass cylinder which was 0, 0107 inches thick, 2.5 inches
long and 8, 000 inches in diameter. Twenty-four foil-type strain gauges
were mounted on the cylinder equally spaced around the circumference.
The ones on the inside were directly opposite to those on the outside,

In order to see if the strain being measured in the load measuring
cylinder corresponded to the strain in the test shell, the following test
was carried out, A test cylinder was instrumented with strain gauges
that were located at every other circumferential position as those on the
load measuring cylinder. The test shell was mounted in the load



measuring cylinder and both sets of gauges read as the shell was
eccentrically loaded. Two typical readings showing the correspondence
of the measured strains are shown in Figure 6,

The test cylinder was cast with a low melting temperature alloy
into an end ring and the other end was secured to the load measuring
cylinder in the same manner. After this operation was completed the
shell was measured to determine the initial imperfection.

In this series of tests the initial imperfection that was measured
was the deviation of the generators of the shell from a straight line.
This measurement was carried out at nine stations around the circum-
ference. The measurements were made with a reluctance type pick up
which has a sensitivity of about 25 volts per inch. The noise level and

drift were such that deflection of 10.4 inches could be accurately read
without making contact with the measured surface

The measurements were carried out by mounting the sensing
head of the pick up in a slide which traveled on a guide. The guide was
attached to the end rings of the shell to be measured and readings were
taken at 32 stations along the generator., The pick up and guide are
shown in Figure 7.

After the initial imperfections were measured, the end ring was
then secured to the end plate of the testing machine with a thin layer of
Devcon, After hardening of the Devcon was complete, the cylinder was
ready for testing.

The buckling test was carried out in the following manner. The
cylinder was initially loaded to about one-third of the expected buckling
load, and the circumferential load distribution was made as uniform as
possible by adjusting the three screws of the testing machine. The load
was then gradually increased in small increments by turning the three
screws simultaneously., After each increase the load distribution was
adjusted again, This was carried out up to about two-thirds of the
expected buckling load. After this point the load distribution was not
adjusted so as to prevent buckling occurring during one of the adjust-
ments, The load was increased in small increments and the strain gauges
monitored until buckling occurred.



Test Results

Two types of axially symmetric imperfections were tested in
this series of tests, Thirty-seven shells with an initial deformation
of the form AR =a_sin mx/L were buckled and three with an imper-
fection of constant Survature given by AR = a_§2(2x/L) - (2x/L)4}
were also tested. Table I shows the intended imperfection of the shells
and Figures 8 through 16 give the measured imperfection on several of
the shells, These figures show the shell generator at nine locations
equally spaced around the circumference, Table I also shows the wall
thickness of the shell tested. All shells had a base diameter of & inches
and a length of 10 inches.

Table I shows that some of the shells had an initial buckling.
This initial buckling consisted of the formation of one wave on the
surface of the shell, This caused the load distribution to fall off in the
neighborhood of the one wave without appreciably affecting the distribu-
tion over the rest of the circumference of the shell, After the initial
buckling, the load was increased until general collapse occurred without
attempting to alter the load distribution. General collapse occurred in
the same manner as for the shells that did not have an initial buckling.

General collapse consisted of a snap-through which is character-
istic of this type of testing, In all but a few cases the post-buckled state
consisted of 2 to 3 rows of buckles that extended completely around the
circumference. The number of circumferential waves is noted in Table
I, All of the shells that had an initial imperfection amplitude greater
than 0. 010 inches buckled at one end or the other., This buckled state
consisted of 2 to 3 rows of buckles that started quite close to one end
and extended about one-third of the way up the shell, There did not
seem to be a preferred end for this buckling to take place. The other
shells with small positive imperfection, negative imperfection, and no
intended imperfection buckled over the middle third of the shell. Again
this consisted of 2 to 3 rows that extended completely around the
circumference,

Table I also gives the maximum variation in load distribution
near buckling, The average maximum variation in load distribution
for all the shells tested was 18, 6 per cent, In most cases the average
stress was nearer the maximum stress rather than the minimum,
Figures 17 and 18 show the load distribution on two shells as the load
was increased, The initial buckling is easily detected in Figure 18.
Figures 19 and 20 give the load distribution on several of the other
shells at the last reading before buckling.



The values of K for this series of tests are given in Table I
and the values of Gcr/O'cn are plotted versus ao/t in Figure 21.

These are compared with the Kanemitsu and Nojima value which for

the L/R and R/t corresponding to these specimens gives K =0,17.
The theoretical curve shown in the figure is the result of the analysis
given in the Appendix. The following important features can be seen:

I, That with proper care in manufacturing and testing,
values of the buckling stresses can be obtained
which are much higher than those usually found.

2, That, for the displacement forms tested, small
departures from initial straightness lower the
buckling stress and that the effect for inward
displacements is greater than that for outward
displacements,

3. That if the outward displacements are increased
the value of the buckling stress again rises until it
reaches essentially the same value as that for the
initially straight cylinder.

4, That the constant curvature and sine wave shape
give essentially the same values of O for the
larger values of a_/t.

The drop in the value of ¢ for 0 < a /t<£ 10 and the return
to the '"perfect'' value for ao/t>2(f£annot be explained at this time., It
is felt that some of the scattér in the experimental results can be
accounted for by the variation of stress around the circumference of the
shells. Also the lowering of the value of Ty below the classical value
may be in part due to the fact that the classical buckling load, as well
as that computed in the Appendix, is calculated under the assumption
that the shell is free to expand in the radial direction during the loading
while the edges of the test cylinders were rigidly clamped.



APPENDIX

DETERMINATION OF BUCKLING LOADS FOR A CYLINDRICAL
SHELL WITH AN AXIAL SYMMETRIC IMPERFECTION HAVING
THE SHAPE OF A HALF SINE WAVE IN THE LENGTH DIRECTION

The method of solution is as follows:

1, Determine the stresses and deflections in the shell that
occur before buckling during the loading.

2, Consider the stresses and deflections occurring during
the buckling as small perturbations about the solution
of step 1 and linearize the equations,

3. Solve the eigenvalue problem obtained in 2 and deter-
mine the smallest eigenvalue,

The equations that will be used for the solution are the shallow

shell equations of Marguerre (Ref, 7). Using the coordinate system
shown in figure 22, the equations are:

v4F =Et{w2-w w_+ 2w W -wW W =W W } (1a)
xy XX Yy OXy Xy OXX  yy XX Oyy

4
Dv w = Fyy(wxx +w ) - Zny(wxy + Woxy) + Fxx(wyy + woyy) (1b)

where w_ is the initial deviation from the flat plate and F is the stress
function fefined as:

82F =N 82F =N 82F _ 2)
—2' - ’ ""2' - ] - - ’
ox y 9y * axdy xy
and
2 2
_ ow _ o0F
ox ox



Equation la is a compatibility relation and equation 1b is the equilibrium
equation in the direction perpendicular to the xy plane,

In the case of interest here as shown in Figure 22:

1 2 2 .
wo=z—ﬁ(y—yo)-ao s1n%. (3)

* *
Let F, and w Dbe the solutions of the axial symmetric problem before
the buckling occurs, Let F and w be the perturbation stress function
and radial deflection occurring during the buckling. Then

3 % —_

i —
F = F + F w = w + w, (4)

Substituting Equation 3 and 4 into Equation 1 and remembering that the
state is axially symmetric, one obtains:

4 _x Et * 4= — * T2 . X
v F’+-R—wxx +v F+Et{wyy(wxx +a (_L) sln—I:—)+

F 1w } +Et{\; W -w 2} =0,
R "xx XX Yy Xy

4 %
d'w % * mad . X * 1 4—
D dx4 - Fyy (Wxx + a (f) sin —I:—) - Fxx R + Dv w + (5)
— %* T2 . WX ¥* = = 1 * =
- Fyy(wxx + a'o(-f.) sin T) - Fyy Wex " Fxx R~ Fxx Yyy +

{— Fyywxx + Znywxy - Fxxwyy} =0,

* .
Since F* and w are the solutions for the pre-buckled state, the
terms that are underlined are equal to zero., Also, since we are only
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interested in the bifurcation points of the solutions, the perturbatmns
may be considered arbitrarily small and all nonlinear terms in F and
W can be dropped. This leaves us with the following set of equations:

4= —_ % T2 . wX 1 —
v F = Et {- Wyy(wxx + a'o('I—.;) sin T) R wxx}

(6)

4 = % T2 . 7WX * — = 1 * —
D w = Fyy(wxx + ao(I—_.) sin —L—) + Fyywxx + Fxx R + Fxx wyy’
which is seen to have a solution of the form:
—_ = . m = _ = . m
w = 5 (x) sin T{X . F = 7 (x) sin —I_IX . (7)

This solution satisfies the necessary periodic conditions in the circum-
ferential direction when m is a whole number,

Axially Sytnmetric Solution

The axially symmetric solution must satisfy the following set of

equations:
4_% . Et * _
\/ F + R Vxx © 0 (8a)
4 *
d'w * % wyd . TX 1 %
D A - Fyy(wxx+ a’o(T..) sin4)- g F__ =0 (8b)

It will be assumed that the shell is free to expand radially at the
ends during the loading and that the edges of the shell are supported in
a pinned manner as the shell expands radially, This expansion is due to

Ro
. . . o . .
:}::elis’csnsson ratio and is equal to —E— where o, is the applied

11



e
Therefore, the boundary conditionson w are as follows:

* 7}R0‘0 *

w - —g— =0, w _ =0 at x = 0,L (9)

sk
The boundary conditions on F are given by:

F¥* =N =0t at x = 0,L (10)
Yy' X (o]

The other conditions necessary to completely specify the problem are
b b3 %

that u and w must be independent of y and that v' must be

identically zero,

Using these conditions the solution of the axially symmetric
problem is given by:

m™\2
* P Ro, N 7ot 25(1) . mX
Vo TE z Z s oY
DIy +o yT) +E
L o 'L 2
R
(11)
F*z-l- t2+ <Iotao Et . mx
2 %" 1r4 ‘H’TEt R ®°°T -
D%)+c&%%h7
R
4 2

The denominator D(IE_.) + o-ot(E) + Efé can be written in the following
R

form:

/ 2
L
2R V3(1-18) | 2V3(1-9) Et

+

2V3(1-v%) L2
&)
Rt

(12)
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The middle term is equal to two when Ty is the classical buckling

stress and the first and last terms are reciprocals of each other. The
value of the last term, for the shells that were tested in the experimental
part of this work, is 1832, Since the s of interest is always of the

order of the classical buckling stress the denominator can be approxi-

mately rewritten as Et/RZ. Therefore, the quantities of interest, which
occur in the perturbation equations, can be written as:

* 0 _ % 2 T4 . mx

Yxx = E R 2 (D) sin T

* w2 . TX

Fxx = -0, Rt ao(f.) sin 1, (13)
F’ﬁ = o t,

Yy

*
It is noticed that W, occurs in the coefficient of the perturbation

equations always in combination with ao(rr/ L)2 sin % . Therefore, this

coefficient can be written as:

a
ao(-E)Z sin T {1 - —E3 (5111)2} (14)

For the shells of concern here, R is of the order of L and o 1is
much less than E. Therefore, this second term in the bracketg can be
neglected in comparison with one. This amounts to neglecting the
additional curvature of the shell in the x-direction caused by the loading
in comparison with the initial curvature of the shell in this direction.

Solution of the Perturbation Equations

After the initial load is applied, the ends of the shell are assumed
to be pinned with respect to the radial direction, This implies

13
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or since

v = % sinf%-y

(15)

F=§-——F2: =0, at x = O,L
ox
or since
F = 7 sin _r%_y
(16)
-1

n=7mn=0 atx = 0,L

These conditions on F imply that at the ends of the shell the stress in
the axial direction and v are equal to zero.

These boundary conditions are commonly used in shell stability
analyses because of their simplicity. They can be looked upon as
allowing the ends of the shell to warp freely in the axial direction,
constraining the circumferential movement, and giving a pinned support
with respect to the radial direction,

Now let us introduce the nondimensional quantities as follows:

2 3(1-2%)

§=§/t,n=1_~|' —E?——-,g=x£, m=r_n';LR
\/— —
2
a2 y31-27) 2 V31-2%) L2 7R
o _ _ ‘o
a = : R e A= - o2 \30-75).
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Using equations 13 and 17 the perturbation equations given by equation
6 become:

[/
A Zrn2 "]”+ rn4'q =-a f/+ almz_g sin §
(18)

;’V- 2m25//+ m4_3 = - )\ aglfl- an’- )\almzj sin§ - a.lmzn sin§.,

where: n’ = %8 etc.

The solution given here will be an approximate one which satisfies
the compatibility equation exactly and the equilibrium equation approxi-
mately, The procedure is as follows,

1, Assume a suitable form of ¥ which contains a
number of arbitrary constants and satisfies
exactly the necessary boundary conditions.

2, Substitute $ into the compatibility equation and
solve for m making sure that n satisfies all the
necessary boundary conditions.

3. Substitute % and 7n obtained in the first two steps
in the equilibrium equation and determine the un-
known constants in such a manner so as to
minimize the error by the Galerkin method.

It is assumed that can be represented by the following series
which satisfies the necessary boundary conditions:

n
; = Z Aj sin j £. (19)
j=1

Solving the compatibility equation for n gives

15



2 n
a.m . .
e S 5 A singer IS Aj{c:su-l)g_cos(ﬁng

. a .
j=1 mJ j=l mj-1 mj+1l
(20)

+ C1 sinhm§ + C, coshm¢§ + C3§ sinh m§ + C4£_-', cosh m§,

2

where C1 to C4 must be determined in such a manner that the

boundary conditions are satisfied, This gives the following values for

C1 to C4.

"

C1 ! {T (2m coshmmsinhmm + m Tr) - E T+

2m s1nh m
. 2 .
+X_; (-2m sinhmmw - m~wcoshmm) +V41r cosh mn}
C, =- E
1 )2 -
3 2m \—1 TZ
C4 = ZmS1nhm1r { Ylm coshmmw +ECOSth+Y—3 v;

where

QO
H

(21)

2 n

n
a,m — . 1\ 2
1 1 T 2 (j- 1) _(+1) }
§ B A = -
i=1 J{ mJ 1 am3+1§ 2 i= { mJ-l a’mj+l

.2n . . 2
T2 el i i} o S et g,

j=l mj-1 “mj+l mj- 1

16



Next § and m are substituted in the equilibrium equation which is
written in the following manner:

4 —
5'\: Zmzs” + m4_§ + >\a5/- an”+ Aalmzj sin§ + almzn sin§ =E, (22)
E represents the error resulting from the fact that this equation is not

identically satisfied, The unknown constants are determined by a
Galerkin procedure in the following manner:

T
J Esinigdt =o, i=1,2, ... n. (23)
o

The resulting equations for the Aj's then become:

n

Z (A.. - AB.)A. =0 i,j both even or odd, (24)
._1 1J 1J J
J-
where 2
a,m
]
B, = O, - (b, -c.) —
ij ij ij 3% 0
2
a‘mj ajz a.lm a;m
Ay = an* amj+4a_J2 mj| 035 2 ) %1 mj-17 Cij*mjl

4ai j-1 mj- mitl
2 2 3
Zalm ™8 m a, m 2
+ - ___J_ + g - Zm d g
. a . 2 mj mi mj “mi
Ti mi ami mal
2, 22 .1 1 1 1
amj- (m + J ) ’ ij 1+j_1 1'J+1 ’ 1) 1+J+1+ 1-_]-1
. 142 2
4 =t 1 o . G o 1 ]
1 1 - 2
8mj = T T ' "mj °mj ™ “mj
%mj-1 mj+l
_ .2 2
VRS GO | 1 V VNS W v,
mj-1 amJ amj-l mj+1 am_] a’mj+1
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The minimum eigenvalue will be dependent on the number of
circumferential waves m as well as the parameters of the problem
a, and a which are the amplitude of the initial imperfection and the
properties of the shell, The solutions of the eigenvalue problem were
found by using an IBM 7090 digital computer,

In all the calculations carried out the parameter containing the
shell dimensions was fixed at the value corresponding to the experi-
mental test cylinders, This value of a was 1832, Both the even and
odd problems were computed, The results of this calculation for five
values of a, { 0 are shown in Figure 23, The classical value for
the perfect shell corresponds to 1. The numbers on the curves
correspond to the predominant term in the eigenvector.

The absolute minimum eigenvalue over the whole range of the
circumferential wave number is easily found from these curves as
well as the corresponding circumferential wave number. The mode
shape of this minimum is seen to be the first mode. This means that

the buckling shape for a, € 0 has the form sin "T}:E in the axial

direction. The higher modes contribute only about a 2 per cent
correction to this pattern. The number of circumferential waves
varies from 6 to 8 as a, varies from -100 to 0.

In the case where the shell bows outward, meaning a,> o,
convergence of the eigenvalue problem was not obtained, However, the
classical buckling load corresponding to the value of A =2 was
established as a lower bound for all values of a3 0.

The variation of the theoretical buckling load with ao/t is
shown in Figure 21.

Since for a_<{ 0 the reduction in buckling load given by the theory
is much less than tRat found in the tests the following comparison was
made. The value of the buckling stress was found that corresponded to
approximately the same number of waves in the circumferential direction
as that found in the tests, The comparison for ao( 0 is shown in
Figure 24, The numbers on the curves correspond to the predominant
term in the eigenfunction expansion, and those at the ends of the curves
to the number of circumferential waves. It is seen that the decrease in
buckling stress with increasing negative imperfection amplitude is less
as the circumferential wave number increases, The buckling mode shape
is also more in line with the experimental results. The eigenfunction has
more axial waves as the number of circumferential waves increases and
the amplitude of the waves at the center of the shell is greater than the
amplitude of the waves at the edges. Again, this is nearer the experi-
mental results.

18
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Fig. 7 - Initial Imperfection Measuring Equipment
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